
General announcements



The Beginning
We’ve said there is a rotational counterpart to every translational parameter 
you’ve used to date.  You need to learn what those counterparts are.  You need to 
know what the symbols are and what those symbols are called.  That is what the 
beginning of the PowerPoint is about . . . 



Some terminology
body rotates

in time “t”
body translates

in time “t”

rate of change 
of position

rate of change 
of velocityposition

translational

rotational θ (called angular

(unit radians)

position)
(symbol theta)

ω

(symbol omega)
(unit radians/sec)

(called angular
velocity)

α
(symbol alpha)

(called angular
acceleration)

(unit radians/sec  )2



Position

Δθ = θ2 − θ1

s

Angular displacement : the angle through which a point on the body rotates.Δθ
Units: radians.
Reminders:

2π radians = 360o--
One radian is the angle subtended for an 

arclength of one radius
--

Arc length “s” is the linear distance a rotating
point moves

--

Radius “r” is the distance of a point from the
axis of rotation, where the axis of rotation is the line around which
the object rotates—it is perpendicular to the plane of rotation.

--

So how to connect rotational displacement and translational displacement, and 
what might be the consequence of that relationship?



Rotational versus Translational 
Parameters

Definition of a radian?

θ = 1 radian

R s = R
If you lay out a one radius arc-length, the angle 
subtended is defined as one radian (see sketch). 

13.)

And what is the arc length associated with a       radian angle?

So what arc-length is associated with a 2 radian angle?

Δθ

And what arc-length is associated with a 1/2 radian angle?
s2 = 2R

s1/2 =
1
2

⎛
⎝⎜

⎞
⎠⎟
R

s = Rθ

where R’s units are meters per radian and units are in radians.θ 's



Taking the derivative of both sides yields:

   ds
dt

   =        R             dθ
dt

Taking the derivative of both sides again yields:

more commonly written as: v = Rω

more commonly written as:

These are NOT kinematic relationships! They work whether the acceleration is 
a constant or not.

14.)

    dv
dt

   =       R              dω
dt

a (m/s2 ) = R m/rad( )  α rad/sec2( )

a = Rα

where v is the velocity of a point moving with angular 
velocity     upon an arc R units from the fixed center.ω

R
ω

v = Rω

Fixed point

which means v (m/s) = R m/rad( )  ω  rad/sec( )



Position: 𝛥x vs. 𝛥θ

Note that this is not a kinematic relationship! This is a rotational definition and 
is true for any rotation.

Consider a bike wheel.  As the wheel turns through
some angular displacement 𝛥θ , it will also travel across 
the ground in a translational fashion:

The arclength s of the rotation is the same 
as the linear distance the wheel’s center of mass 
travels in the same amount of time.

The larger the wheel radius, the greater the 
arc length for any given angular displacement. 
Thus: 

s = r θ (where s is also to linear distance x traveled along the ground)

A little different view of all you’ve just learned



In translational motion, the rate of change of position is called velocity, in 
units of m/s.

Velocity

Remember that any point along a line on the 
disk rotates through the same angular 
displacement in the same time. Thus, the angular 
velocity of any point must be the same!

So what does this tell us about the translational
speed of each point?

In equation form:  (units are rad/sec)ω = Δθ
Δt

In rotational motion, the rate of change of position (aka angular displacement) 
is called the angular velocity (𝛚) measured in rad/sec.

Note that this is NOT a double-u! It’s a Greek letter: omega.



Velocity: v vs. 𝛚

The translational velocity of each point, however, depends on its position 
relative to the axis of rotation (its radial distance).

Farther out, points have to move faster to get 
through the same angular displacement in the same 
time. 

𝑣! = 𝑟𝜔

Note that this translational velocity is also known as the tangential velocity
because this vector is tangent to the arc the body is traveling along!

We know the angular velocity (𝛚) of any point on the disk must be equal. 

The closer to the center, the slower each point has 
to move per unit time to achieve the same 𝛚. 

In other words:



Similar to before, the tangential acceleration a and the angular acceleration 
𝛂 can be related by:

Acceleration

𝑎! = 𝑟𝛼

It contributes to centripetal acceleration which changes the body’s 
direction (pulls it out of straight-line motion); and

By now you should know the drill.  If             , then angular acceleration should 
be…?

𝛼 = !"
!#

(units are rad/s2)

Since this is circular motion, we ALSO have to worry about centripetal 
acceleration ac.  As ac = vt2/r.

Apparently translational velocity does two different things!

a = Δv
Δt

It contributes to tangential acceleration which changes the velocity’s 
magnitude (speeds a body up or slows it down).



Some conceptual practice
Mr. White and Mr. Fletcher are riding on a merry-go-round. Mr. White rides on the outer 
rim of the circular platform, and Mr. Fletcher rides halfway between the rim and the center of 
the platform. When the MGR is rotating at a constant angular speed, compare Mr. White’s and 
Mr. Fletcher’s angular and tangential speeds.

Why is the launch area for the European Space Agency in South America and not in Europe?

Their angular speeds are the same, as both of them travel the same portion of the 
circle in the same time. Mr. White’s tangential velocity is twice Mr. Fletcher’s, 
however, because he is twice as far radially from the center (v = r𝛚).

The tangential velocity of the Earth is greater at the equator than it is closer to the 
poles – Europe’s radial distance from the axis of rotation is much smaller than the 
equator’s. This way, the satellite being launched (eastward, in the direction of 
rotation) already has some initial tangential speed (about 1700 m/s) which makes 
it easier to get into orbit (which requires a speed of about 8000 m/s).



The relationship                 is really code.  It is telling you three 
things:

 
!v = −(3m / s)î

 
!
ω = −(3 rad/sec)î

Rotational Vector Notation

You know how to decode the above expression.  For you, it’s no big deal.  

a.) the magnitude of the velocity (in this case, it’s 3 m/s); 

b.) the line of the velocity (the tells you the vector is along the x-axis, 
versus being along the y-axis or z-axis or some combination thereof); and 

c.) the + or – tells you the actual direction along the line (in this case, it’s 
in the NEGATIVE x-direction, versus the POSITIVE x-direction); 

î

8.)

The question is, “What three things does this coding tell you?”

Similarly, there is a way to decode the expression below.  



The relationship                     tells you:ω = −(3 rad/sec)î

In short, though, if you know how to do the decoding, the notation is as simple as                          
.

a.) the magnitude of the angular velocity (in this case, it’s 3 rad/s); 

b.) the DIRECTION OF THE AXIS about which the angular velocity proceeds 
(this will be perpendicular to the plane of the motion, so an “ “ tells you the 
motion is in the y-z plane); and 
c.) the + or – tells you the whether the rotation is clockwise or counterclockwise, 
as viewed from the positive side of the axis (in this case, it’s NEGATIVE, so the 
rotation will be clockwise—more about this later). 

î

9.) 
!v = −(3m / s)î

Clarification concerning parts c above.  Both physics and standard mathematics 
use what is called a right-handed coordinate system.  That means that if you place 
your right hand along the +x direction and curl your fingers in the +y direction, 
your thumb will point in the +z direction.  The reason this is significant is that in 
doing so, you will be curling your fingers counterclockwise.  So if you want to 
characterize a body moving counterclockwise in the x-y plane, giving the direction 
as +k makes sense as that is the direction your thumb would point if you made the 
fingers of your right hand curl along the direction of motion.



Sign conventions with rotation
So far, we’ve used linear coordinate systems, with + and – directions based on x 
and y axes.

• If you see �⃗� = (−3"
#
) ̂𝚤 , what does that mean?

• For rotational motion, we have a similar, but slightly different ”code.” We use a 
right-handed coordinate system for rotation: 
– The fingers of your right hand point along the +x ( ̂𝚤) axis
– You curl your fingers towards the +y ($𝑗) axis
– Your thumb points in the +z ('𝑘) direction

• Using this method, counterclockwise rotations are positive (because the axis of 
rotation is in the positive direction), and we define the direction by giving the 
axis of rotation

It’s a code! This code tells you three things: (1) the magnitude of the 
velocity is 3 m/s, (2) the velocity is along the ̂𝚤 (x) axis, and (3) it’s in the 
negative direction along that axis. 

Same Material, Different Approach



Sign conventions with rotation
Knowing this, what does this code tell you:  𝜔 = (−3 𝑟𝑎𝑑/ sec) ̂𝚤

(1) The magnitude of the angular velocity is 3 rad/sec
(2) The axis of rotation is along the x axis ( ̂𝚤 direction). – so the plane of rotation is 

the y-z plane
(3) The rotation is clockwise (fingers curl such that the thumb points in the - ̂𝚤

direction)

A turntable (record player) is rotating as shown to 
the right (thanks, Mr. White!). The magnitude of its 
angular speed is 0.3 rad/sec. What is its angular 
velocity in vector form?

We know the magnitude is 0.3 rad/s. It’s rotating in the 
plane of the table (the x-y) and if we use our right 
hand and curl our fingers clockwise, our thumb points 
down into the table, which is the −'𝑘 direction. So the 
velocity is: 𝜔 = (−0.3 !"#

$
)'𝑘



Rotational kinematics
In translational motion, we knew that if acceleration was constant over an 
interval, we could use our three kinematic equations to calculate initial and/or final 
coordinates, initial and/or final velocities and/or acceleration over that time interval.

Translational motion Rotational motion

In rotational motion, we use the SAME EQUATIONS to calculate angular 
parameters over a time interval, as long as the angular acceleration is constant! Same 
rules, same equations, but with rotational parameters. 



Sign conventions with calculations
Just like in linear kinematics, the signs of your displacement, velocity, and 
acceleration vectors in rotational kinematics matter. Determine the signs of your 
initial parameters properly, and things will work out. 

If you want practice with rotational kinematic calculations before the quiz, 
there are a few problems on the next few slides you’re welcome to try, with 
numerical answers (not worked out solutions) following.



Rotational kinematics problem (7.5)
A dentist’s drill starts from rest and reaches 2.51 x 104 revolutions per minute in 3.2 
seconds with constant angular acceleration. Determine the drill’s:

(a) angular acceleration
(b) angular displacement during that interval

We know that 𝞈1 = 0 rad/sec and t = 3.2 seconds. We need to convert 𝞈2 into rad/sec:

2.51𝑥10!
𝑟𝑒𝑣
𝑚𝑖𝑛

2𝜋 𝑟𝑎𝑑
1 𝑟𝑒𝑣

1 𝑚𝑖𝑛
60 𝑠𝑒𝑐 = 2628 𝑟𝑎𝑑/𝑠𝑒𝑐

Now find 𝛂 using the angular velocity equation:

𝜔" = 𝜔" + 𝛼𝑡 ⟹ 𝛼 =
𝜔" − 𝜔#

𝑡 =
2628 𝑟𝑎𝑑/ sec− 0 𝑟𝑎𝑑/𝑠𝑒𝑐

3.2 𝑠𝑒𝑐 = 821
𝑟𝑎𝑑
𝑠"

Now find 𝛉 using either equation with angular displacement:

∆𝜃 = 𝜔#𝑡 +
1
2𝛼𝑡

" = 0 +
1
2 821

𝑟𝑎𝑑
𝑠" 3.2 𝑠 " = 4203 𝑟𝑎𝑑𝑖𝑎𝑛𝑠



Rotational kinematics practice - 1
A turntable rotates at -0.28 rad/sec. In 4 seconds, it reaches +0.20 
rad/sec.

(a) What is the turntable’s angular acceleration?
(b) How long will it take to reach +0.10 rad/sec?
(c) What angular speed will it have after 0.3 seconds?
(d) Through how many radians will it travel in 8 seconds? How many 
rotations is that?

α =
ω2 − ω1

Δt
θ2 = θ1 +ω1t +

1
2
αt2ω2

2 = ω1
2 + 2αΔθ



Rotational kinematics practice - 2
A disk is rotating at -25 rad/sec and angularly accelerates at -9.8 rad/sec/sec. 

(a) How far will the disk rotate in 2 seconds?
(b) How fast (angularly) will the disk be moving after it rotates for 2 seconds?
(c) How far will the disk rotate between t = 1 and t = 3 seconds?
(d) After 2 seconds, the acceleration changes to 3 rad/sec/sec. How long will it 
take for the disk to come to rest?
(e) Without actually using the time, determine through how many radians the 
disk will turn during the time calculated in part (d). 
(f) How many rotations is that?



Rotational kinematics practice - 3
An auto whose wheel radius is 0.3 m moves at 15 m/sec. The car applies its brakes 
uniformly, slowing to 4 m/s over a 50-m distance.

(a) What is the wheel’s final angular velocity?
(b) What is the wheel’s initial angular velocity?
(c) What is the angular displacement of the wheels as the car slows over this 
distance?
(d) What is the wheel’s angular acceleration during the slow-down?
(e) Using the information from (d), determine the car’s translational acceleration.
(f) Without using the final angular velocity, determine how long was required for 
the slow down.
(g) Knowing the final angular velocity, determine how long was required for the 
slow down (yes, this should end up the same as f).
(h) Determine the angular displacement and the linear displacement of the wheels 
during the first 0.5 seconds of the slow down.



Rotational kinematics practice - answers

• Question 1:
– (a) +0.12 rad/sec/sec (b) 3.2 sec.              (c) -0.24 rad/sec               

(d) 1.6 rad = 0.25 revolutions

• Question 2:
– (a) -69.6 rad (b) -44.6 rad/sec (c) -89.2 rad

(d) 14.9 sec (e) -332 rad (f) 52.8 revolutions

• Question 3:
– (a) 13.33 rad/s (b) 50 rad/s (c) 166.6 rad (d) -6.97 rad/s/s        (e) -

2.09 m/s (f) 5.26 sec (g) 5.26 sec (h) 7.23 m



Point of contact on a rolling object
Consider a point on the edge of a rolling object, like a wheel:

When the point on the edge of the 
wheel hits the ground, what’s its 
instantaneous velocity?

The point turns around in the y-
direction, which means its y 
velocity is 0. It’s not sliding relative 
to the ground, either, so its x 
velocity is 0. At this instant, its 
overall velocity is 0 m/s!

We call this “rolling without slipping” – a major assumption in many 
problems. The “without slipping” part means we don’t have to worry about 
kinetic friction along the surface contact (which would really complicate the 
math). This also means that static friction must be preventing the sliding – this 
is how objects roll in the first place! 



As an additional bit of craziness, if you know the angular velocity 
about one point on a rotating object, that will be the the angular velocity about ALL 
points on the object.  How so?

18.)

ω

Consider a rotating platform with a chair at its center that 
is rigged to ALWAYS face toward the wall:

You sit in the seat.  It takes 10 seconds for the platform to 
rotate through one complete rotation underneath you.

a.) What does the motion look like from your perspective, 
assuming a constant angular velocity?

(It will move around you.)
b.) Relative to the axis you are sitting on, what will be the platform’s
angular velocity?

ω = 2π rad
10 sec

   = .2π rad/sec

the wall

chair



as time proceeds

What you notice is that YOU are 
moving away from the wall at the 
start.

you

The chair is now placed at the edge of the platform.  It is still 
rigged to always face toward the wall.  Just as was the previous 
case, it takes 10 seconds for the disk to move through one rotation.  

19.)

Following the motion as seen from 
the perspective of the room:

ω

the wall

chair

You always start facing away from the 
disk, seeing none of it (looking at the 
wall).

As the disk rotates, you continue to face 
the wall but the disk begins to come into 
view on your right. In other words, the 
disk appears to be rotating around the axis 
upon which you sit.

chair

at start

BUT from your perspective IN THE CHAIR:

the wall

you

at start

as time proceeds

chair's
frame



The chair is now placed at the edge of the platform.  It is 
still rigged to always face toward the wall.  Just as was the 
previous case, it takes 10 seconds for the disk to move 
through one rotation.  From your perspective, what does the 
motion look like, and what is the angular velocity of the disk 
about your position?

19.)

Following the motion as seen by you in the chair at the edge:

ω

the wall

chair

the wall

chair
You start facing away from the disk, 
seeing none of it (looking at the wall).

As the disk rotates, you continue to face 
the wall and the disk begins to come into 
view on your right. In other words, the 
disk appears to be rotating around the axis 
upon which you sit.

at start as time proceeds



Progression 
of motion 
from watcher’s 
perspective 
(remember, the 
watch is 
ALWAYS facing 
the wall!).

20.)

Time 1

Time 2

Time 3

Time 4
And what is the 
angular velocity 
of the disk about 
your vantage 
point?

ω = 2π rad
10 sec

   = .2π rad/sec

You will sweep out radians in 
10 seconds, so you’ll get:

2π
The same as about 
the central axis!!!!!



The point: The amount of time it takes the for the platform to rotate around 
you is the same in both the “center seat” situation and the “edge seat” situation.  
Additionally, the angular displacement in both cases during one revolution’s 
worth of time is 2π radians.  

21.)

Sooooo (in other words), if the object appears to be rotating around you, the 
angular velocity you observed will be the same no matter where on the platform 
you are standing. 

Translation: If you know the angular velocity of an object about any point on 
the object, you know the angular velocity about any other point on the object.



Angular velocity on a disk 
(Ms. Dunham’s version)

Let’s look at what a rotation looks like from different points of view (e.g. 
from the central axis of rotation) based on what we just saw.

Imagine a person sitting on a disk, on a chair that is fixed so that it always 
faces the same direction. The disk rotates through 1 rotation in 10 seconds. 
What does the person see?

Wall the chair faces

platform as seen
from above

The person sees the platform rotate around 
them at 𝜔 = %& !"#

'( $)*
.  



Angular velocity on a disk
Now the chair is placed so that it’s on the edge of the platform, but still faces the 
same direction at all times. The disk again rotates through one rotation in 10 
seconds. Now what does the person experience?

Wall the chair faces

platform as seen
from above

The person sees the platform rotate around 
them at 𝜔 = %& !"#

'( $)*
, just like before (same 

rotation in same time). This time, though, 
they see the entire disk rotate out from their 
right, in front of them, and away to the left. 

The point is that you could pick ANY point 
on the disk and observe the rotation from 
the perspective of that point, and the 
angular velocity of the disk about that point 
would be the same as the angular velocity 
of the disk about any other point on the disk.  

EVERY POINT WILL SEE THE SAME ANGULAR VELOCITY ABOUT ITSELF AS 
EVERY OTHER POINT!



Point of contact on a rolling object

When the point reaches the height of the axle, it will be moving at the 
speed of the car (v=R𝞈). When it reaches the top of the wheel, it will be 
going twice the speed of the car (v = 2R𝞈). This cycle repeats – crazy!

Back to the point on the edge of a wheel – let’s follow it around the wheel as 
it rotates. We know the point’s velocity is 0 m/s at the point of contact, but 
what happens as it moves to the “top” of the wheel on, say, a car on the 
freeway going 60 mph?



But why is this important, really?

21.)

Consider a ball rolling across a table.  It’s 
center of mass has some velocity and all of 
the body’s mass is rotation about the center of 
mass with some angular velocity    .  So how 
do we relate those two parameters (and how do 
we justify that relationship)?

vcm

ω

We only have one relationship between the angular velocity of 
a mass moving in a circular path and its instantaneous velocity in 
that motion, and that is              , but that requires rotation around a 
fixed point.

v = Rω

vcm

ω

v = Rω
ω

R

But if the contact point of the rolling ball is 
instantaneously fixed (zero velocity), and if the angular 
velocity about the center of mass is the same as the 
angular velocity about that fixed point (instantaneously), 
then it follows that vcm = Rω

vcm = Rω

ω

R

zero velocity pointThis is important!!!



Quiz 1
• We have now covered what will be on Quiz 1 tomorrow.
• Be able to:

– State the rotational counterparts of translational motion (e.g. position, 
velocity, acceleration) in both systems and how they're related (e.g. v = r𝛚)

– State the rotational kinematic equations and use them to solve problems 
like the ones from class/in the ppt

– Interpret unit-vector notation for angular velocity and how we determine 
direction

– Explain any examples we've talked about in class (e.g. rolling about point 
of contact)

• Anything after this slide is not on quiz 1


